Dr. Thomas Krause

Dr. Thomas Krause

Senior Research Associate

University of Hohenheim

University of Stuttgart


Dr. Thomas Krause is a postdoctoral researcher the Gambling Research Center at the University of Hohenheim and Research Fellow at the Institute for Social Sciences at the University of Stuttgart . His core research areas include methods of empirical social research, statistical learning and modeling, LLM Applications, longitudinal analysis methods, prejudice and gambling research.


  • Sociological Method Research
  • Quantitative Social Research
  • Machine Learning
  • Statistical Analysis
  • Large Language Model Applications
  • Longitudinal/Multilevel Analysis
  • Monte Carlo Simulations


  • Dr. rer. pol. (rerum politicarum), 2019

    University of Stuttgart

  • Master of Arts, Empirical Political and Social Research, 2013

    University of Stuttgart

  • Bachelor of Arts, Social Sciences, 2010

    University of Stuttgart






Multivariate Statistics




Slurm (cluster workload management)














Recent Talks

  • Guest Lecture, 12.12.2023
    Kolloquium “Forschungsfragen der Computational Social Science” of Prof. Dr. Raphael H. Heiberger, University of Stuttgart, (Germany)
    Topic: “Algorithmische Früherkennung von problematischen (Online-)Sportwettenden: Potenziale, Einschränkungen und Empfehlungen."

  • Conference Talk 29.06.2023
    Current Advances in Gambling Research (CAGR) Conference (June 28th and 29th) at King’s College London,
    Topic: “Predicting sports betting player suspensions by algorithm: potentials, limitations, and recommendations."

  • Conference Talk 27.09.2022
    Kongress der Deutschen Gesellschaft für Soziologie 2022 (No. 41), Sektion Methoden der empirischen Sozialforschung: Aktuelle Themen der empirischen Sozialforschung, Topic: “Insufficient Effort Responding bei jugendlichen Befragten: Messung und Ausmaß”

  • Conference Talk 10.03.2022 (with PD Dr. Jens Jetzkowitz)
    Frühjahrstagung 2022 der DGS-Sektion Wirtschaftssoziologie, 10. + 11. März 2022, Topic: “Mit alternativen Geldanlagen die Welt verbessern? – Determinanten der Integration von Umwelt, Sozial- und Governance-Kriterien (ESG) in den Anlagestrategien institutioneller Investoren”

  • Conference Talk 18.06.2021 (with PD Dr. Jens Jetzkowitz)
    Frühjahrstagung DGS (Gemeinsame Frühjahrstagung der DGS-Sektionen „Methoden“ und „Umwelt“), Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Systemforschung und Technologische Entwicklung (IEK-STE) Topic: “Kausalwald-Modelle im Reich der biologischen Vielfalt: Ein kausales Machine Learning Verfahren zur Qualitätssicherung bei Befragungsthemen mit ausgeprägter Sozialer Erwünschtheit”

  • Online Conference Talk 10.10.2020
    Mid-term Conference of Research Network 21 “Quantitative Methods” of the European Sociological Association Quantitative Approaches to Analyzing Social Change, Topic: “The performance of multiple indicator growth mixture models”, Session 5: Statistical Techniques for Identifying and Explaining Social Change

  • Online Guest Lecture, 03.07.2020
    Topic: “Ausgewählte Machine Learning-Verfahren zur human- und sozialwissenschaftlichen Datenanalyse”, Technischen Universität Chemnitz, (Germany), MethodenKompetenzZentrum, Prof. Dr. Jochen Mayerl

  • Talk, 28.01.2020,
    Topic: “Machine Learning basierte Response Style Identifikation: eine Pilotstudie”, Kolloquium “Forschungsfragen der Computational Social Science”, of Prof. Dr. Raphael H. Heiberger, University of Stuttgart, (Germany)


Sozial erwünschtes Bewusstsein für biologische Vielfalt?

“Biodiversity” is a particular term that brings complex ideas of the “abundance of life” to a scientific formula and at the same time marks it as a desirable state. Since the early 1990s, the meta-narrative “threatened biodiversity” has functioned as a meaningful moment of international environmental policy. It is well known that the attitude surveys on social awareness of biodiversity, which the “Bundesamt für Naturschutz” (Federal Agency for Nature Conservation) has had conducted every two years since 2009, are contaminated by social desirability. Since previous analyses either explicitly or implicitly assume that the form of bias is uniform, statements regarding associations and group comparisons are at risk. Causal machine learning methods open up a new analytical approach to the underlying statistical problem. They can be used to uncover how causal effects vary and which variables are related to this variation in such a way that they can explain effect differences. In our specific case, we use causal forest models to show that the influence of social desirability on attitude patterns and behavioral intentions about biodiversity varies systematically, with this effect heterogeneity being significantly associated with the age of the interviewees in a non-linear manner. Furthermore, we present this procedure as a methodological innovation for quality assurance in normatively charged survey topics.


Der Bericht „Jugendstudie Baden-Württemberg 2022 “ informiert bereits zum sechsten Mal über die Einstellungen der Jugend Baden-Württembergs zu Themen rund um Politik und Gesellschaft. Erstmals wurde die Studie von einem Team der Universität Stuttgart durchgeführt, sodass im Vergleich zu früheren Erhebungsrunden methodisch einige Neuerungen anzutreffen sind. Die Befragung von Neuntklässlerinnen und Neuntklässlern fand im Frühjahr 2022 statt; sie erfolgte damit unter dem Eindruck des Krieges in der Ukraine und während die Corona-Pandemie nach mittlerweile zwei Jahren noch immer unseren Alltag mitbestimmt.

Non-Compliance with Indirect Questioning Techniques

Indirect questioning techniques are widely discussed and used as methods to avoid or reduce the effects of social desirability in interview situations on sensitive topics. Nevertheless, current evaluation studies suggest that indirect questioning techniques have a bigger compliance problem than evaluation studies based on the “more is-better” principle would suggest. In our study, we investigate the extent to which question compliance problems can be identified for a variant of the Randomized Response Technique, for the Crosswise Model and Triangular Model. By means of an aggregate and an individual level validation, we examine the response patterns of the participants. Contrary to the actual empirical application context of sensitive topics, we use a non-sensitive question that cannot be distorted by social desirability bias. The resulting “same-is-best” rationale differs from most evaluation studies to date, which work according to the “more” or “less-is-better” principle. Our analyses are based on the data of a convenience sample of 1277 students in the form of an online survey experiment. The results suggest that the indirect questioning techniques show substantial weaknesses in terms of compliance and encourage further individual level evaluations.

Machine Learning basierte Response Style Identifikation: eine simulations-statistische Pilotstudie

Response styles represent a challenge for empirical survey research. Response behavior which is not associated with the content of a survey question can not only influence proportional and average values but also distort model-based parameter estimation. In this pilot study we investigate whether machine learning (ML) methods can be used to construct an empirically based approach to a uniform identification of the most common response style patterns. This method could replace more complex control procedures, which can only find some patterns or are associated with considerable additional effort. Our approach could, therefore, be a more universal and practical option. The method presented here is based on the calibration of the ML model using synthesized data that correspond to a formal definition of response styles (RS) and a proportion of empirical data (European Social Survey) which is not affected by RS. The trained model can then be applied to empirically collected data in order to reliably detect and process RS patterns in survey data. With error classification rates of 0.3 to 3.5 %, the results of this study suggest that our ML-based response style detection is a promising alternative to previous methods.

Einstellungen und Verhalten in der empirischen Sozialforschung: Analytische Konzepte, Anwendungen und Analyseverfahren : Festschrift für Dieter Urban zum 65. Geburtstag

Aus verschiedenen Perspektiven wird in dieser Festschrift zu Ehren von Prof. Dr. Dieter Urban das thematische Feld der Einstellung-Verhaltens-Forschung beleuchtet. Dies umfasst sowohl neuere theoretisch-analytische Zugänge als auch aktuelle methodisch-statistische Entwicklungen sowie methodologische Überlegungen zur Analyse von Einstellungen und sozialem Verhalten in der empirischen Sozialforschung. Der Band unterteilt sich in die Bereiche Theorie, Methodik, Analysestrategien und Längsschnittanalysen in unterschiedlichen inhaltlichen Anwendungsfeldern und deckt damit eine große Bandbreite der sozialwissenschaftlichen Einstellungs-Verhaltens-Forschung ab. Der Inhalt: Perspektiven zur empirisch-analytischen Soziologie • Theorien und Konzeptionen der Einstellungs- und Verhaltensforschung • Einstellungen und Verhalten in der Forschungspraxis: Erhebungsmethoden und Analyseverfahren • Längsschnittliche Analyseverfahren der Einstellungs- und Verhaltensforschung

Informationskriterien zur latenten Klassenidentifikation für Multiple Indicator Growth Mixture Models

This paper evaluates information criteria for class identification in multiple indicator growth mixture models. This identification of latent classes is evaluated under the simulation conditions of missing invariance of the measurement and different class distances. The data of this assessment is based on a Monte Carlo simulation study. This paper extends previous results by evaluating a broader range of IC-Indices. All previously proposed IC measures are examined for their ability to identify latent classes and compared with more recent proposals. These include the Hierarchical BIC, which explicitly takes the latent class structure into account. The evaluations of the simulation results show that the Hierarchical BIC has a completely different identification structure than all other IC-Indices and provides comparatively good results with small distances between the latent classes.

Multiple Indicator Growth Mixture Models: eine statistische Simulation zur Performanzevaluation für sozialwissenschaftliche Analysen

Multiple Indicator Growth Mixture Models (MIGMM) combine the design principles of latent measurement models, growth curve models, and latent class analysis. MIGMMs are thus analytical tools for empirical social research, which consider the measurements as latent constructs and simultaneously allow post-hoc identification and description of group differences with respect to temporal change. By identifying unobserved subpopulations, social change processes and their differences between and within the unobserved subpopulations can be investigated. While simple Growth Mixture Models, based on manifest variables, have already been evaluated in numerous Monte Carlo studies, a systematic analysis of the performance of multiple indicator GMMs is still lacking. This simulation study aims to systematically evaluate the performance of MIGMMs under different data situations, focusing in particular on temporal, group-specific and combined invariance violations of the latent measurement models. The following conditions were manipulated: measurement invariance of the latent constructs, class distance, mixing proportion and the number of observations. It is shown that especially the class distance between the latent growth groups and the violations of the measurement invariance between the latent groups have an influence on the performance of MIGMMs regarding class identification, coefficient estimates and standard error calculation. Based on these results, it is recommended to use MIGMMs only for large and distinct differences in the growth pattern and only for latent constructs with established reliability for group differences. The results of this study are intended to guide the research practice of empirical social research and provide recommendations for the use of this new analytic tool for longitudinal studies.

Wachstumsverläufe von latenten Klassen in der Einstellungs- und Verhaltensforschung

Dieser Beitrag veranschaulicht am Beispiel der sozialen Exklusion von Kindern und Jugendlichen das Analyseverfahren der “Multiple Indicator Growth Mixture Models” (MIGMMs). Diese, für Längsschnittdaten konzipierte, Analysemethode ermöglicht es latente Klassenentwicklungsverläufe, unter Kontrolle von Prädiktoren, explorativ zu identifizieren und darüber hinaus den Einfluss dieser Entwicklungsverläufe auf mögliche Folgen (distal outcomes) zu überprüfen. Die vorliegenden Resultate stehen teilweise im Widerspruch zu den, aus der Literatur in diesem Forschungsbereich stammenden Ergebnissen. Es hat sich gezeigt, dass die Entwicklungsverläufe der zwei identifizierten Klassen über die Zeit hinweg homogen bleiben und die üblicherweise vorgeschlagenen Risikofaktoren (Prädiktoren) keinen nennenswerten Einfluss auf die Klassenzugehörigkeit haben. Die Ergebnisse dieses Beitrags zeigen die Leistungsfähigkeit - aber auch Grenzen und mögliche Probleme - dieses dynamischen Ansatzes für die Einstellungsund Verhaltensforschung, welcher die Ergebnisse herkömmlicher Verfahren um zusätzliche Perspektiven bereichern kann.

Die Angst vor dem Fremden: ein Vignettenexperiment zur Bedrohungswahrnehmung: Ergebnisse eines studentischen Projektseminars

The working paper summarizes the results of a vignette experiment (factorial survey) about threat perceptions in everyday situations. A student research project investigated the possible existence of associations between an outgroup’s visible characteristics (e.g., ethnicity and gender) and threat perceptions, together with dependencies on varying social contexts and respondents’ properties. The analyses are based on data from a student online survey. Multi-level models that account for the hierarchical data structure confirm the hypotheses derived by theory, albeit further variables which influence the survey response and introduce measurement error need to be considered in future research.

Panelanalyse mit Mehrebenenmodellen : eine anwendungsorientierte Einführung

This paper describes how to use multi-level models for longitudinal studies with panel data. A special focus is set on the specification and estimation of hybrid models combining some advantages of models for fixed-effect and random-effects panel regression. The paper addresses some basic principles of multi-level- and panel analysis but it also discusses some very special problems of longitudinal analysis like centering of variables. It presents an example of a stepwise, applied panel regression analysis within a multi-level-model approach using the data of the SOEP (the national German socio-economic panel study) and the SPSS-MIXED-software. After reading this paper every social research scholar should be able to perform his/her first longitudinal analysis by multi-level modeling.

Previous Research Topics and commissioned Reports

Previous Topics:

  • Algorithm-based early detection of problem gambling behavior
  • Response Styles / Insufficient Effort Responding
  • Indirect Questioning Techniques
  • Structural Equation Modeling
  • Measurement Invariance
  • Machine Learning / Statistical Learning
  • Growth Mixture Models
  • Monte Carlo Simulation Methods
  • Hybrid Panel Models
  • Ingroup/Outgroup Attitudes
  • Subjective Well-Being

Commissioned Reports:

  • Krause, T., Otterbach, S. 2023: Analyse der möglichen Auswirkungen einer Preiserhöhung von Gewinnsparlosen, Forschungsstelle Glücksspiel, Universität Hohenheim
  • Krause, T., Wöhr, A., Otterbach, S. 2023: Wissenschaftliche Evaluierung der Implementation des Sozialkonzepts des Sparkassenverbands Bayern, Forschungsstelle Glücksspiel, Universität Hohenheim
  • Wöhr, A., Krause, T., Otterbach, S. 2023: Wissenschaftliche Evaluierung der Implementation des Sozialkonzepts des VR Gewinnsparvereins Bayern eV, Forschungsstelle Glücksspiel, Universität Hohenheim


winter semester 2022/2023:

winter semester 2021/2022:

  • Statistische Modellbildung: Statistische Modellbildung I (seminar)
  • Statistische Modellbildung: Statistische Modellbildung II (seminar)

summer semester 2021:

  • Angewandte Forschungsmethodik I: Strukturgleichungsmodellierung I (seminar)
  • Angewandte Forschungsmethodik II: Strukturgleichungsmodellierung II (seminar)

winter semester 2020/2021:

  • Statistische Modellbildung: Statistische Modellbildung I (seminar)
  • Statistische Modellbildung: Statistische Modellbildung II (seminar)
  • Bachelor-, Master- und Promotions-Kolloquium (Kolloquium)

summer semester 2020:

  • Angewandte Forschungsmethodik I: Strukturgleichungsmodellierung I (seminar)
  • Angewandte Forschungsmethodik II: Strukturgleichungsmodellierung II (seminar)

winter semester 2019/2020:

  • Statistische Modellbildung: Statistische Modellbildung I (seminar)
  • Statistische Modellbildung: Statistische Modellbildung II (seminar)
  • Soziales Handeln im Rational-Choice-Paradigma (seminar)

summer semester 2019:

  • Standardisierte Erhebungsmethoden (seminar)
  • Angewandte Forschungsmethodik II: Strukturgleichungsmodellierung II (seminar)

winter semester 2018/2019:

  • Statistische Modellbildung: Statistische Modellbildung II (seminar)
  • Soziales Handeln im Rational Choice-Paradigma (seminar)

summer semester 2018:

  • Standardisierte Erhebungsmethoden (seminar)

winter semester 2017/2018:

  • Statistische Modellbildung: Statistische Modellbildung I (seminar)
  • Statistische Modellbildung: Statistische Modellbildung II (seminar)
  • Soziales Handeln im Rational Choice-Paradigma (seminar)

summer semester 2017:

  • Standardisierte Erhebungsmethoden (seminar)
  • Die Unwahrscheinlichkeit der Kommunikation (seminar)

winter semester 2016/2017:

  • Statistische Modellbildung: Statistische Modellbildung I (seminar)
  • Sozialwissenschaftliche Methodenlehre: Einführung in die sozialwissenschaftliche Methodenlehre: erkenntnis- und messtheoretische Grundlagen (lecture)

summer semester 2016:

  • Erhebung und Analyse xenophober Orientierungen und Verhaltensmuster. Möglichkeiten jenseits der standardisierten Befragung II (Projektseminar)
  • Standardisierte Erhebungsmethoden (seminar)

winter semester 2015/2016:

  • Erhebung und Analyse xenophober Orientierungen und Verhaltensmuster. Möglichkeiten jenseits der standardisierten Befragung I (Projektseminar)
  • Statistische Modellbildung II (seminar)

summer semester 2015:

  • Angewandte Forschungsmethodik II: Strukturgleichungsmodellierung II (seminar)
  • Die Unwahrscheinlichkeit der Kommunikation (seminar)

winter semester 2014/2015:

  • Soziale Realität und soziales Handeln (seminar)
  • Rational Choice Theory: modifications and extensions (seminar)

summer semester 2014:

  • Teaching Assistant at the ECPR Summer School in Methods and Techniques at the University of Ljubljana, Slovenia. Course: Introduction to Structural Equation Modelling (held in english) Instructor: Jun-Prof. Dr. Jochen Mayerl
  • Angewandte Forschungsmethodik II: Strukturgleichungsmodellierung II (seminar)
  • Soziale Systeme und Kommunikation (seminar)

winter semester 2013/2014:

  • Rational Choice Theory: modification and extensions (seminar) (held in english)
  • Soziale Realität und soziales Handeln (seminar)

summer semester 2013:

  • Angewandte Forschungsmethodik II: Strukturgleichungsmodellierung II (seminar)